The Kite Tuning

© (® Kite Giedraitis 2019

Table of Contents

The Kite Tuning 1
Section 1 - About the Kite Tuning 1
Section 2 - About 41-edo 2
Section 3 - Fretboard Diagrams 4
Section 4 - Chord Shapes 9

Section 1 - About the Kite Tuning

The Kite Tuning is actually a fretting, with two obvious tunings, and others possible. The fretting is every other step of 41 -edo (equal division of the octave into 41 steps), i.e. 41 -ED4 or " $20 \frac{1}{2}$-edo". However, the interval between two adjacent open strings is always an odd number of 41 -edosteps. Thus each string only covers half of 41-edo, but the full edo can be found on every pair of adjacent strings.
The two versions of the Kite Tuning differ only in the open string interval. The major version has $13 \backslash 41$, about 5/4, and the minor version has $11 \backslash 41$, about $6 / 5$. Both versions have the four 3 rds with the lowest odd limit $(7 / 6,6 / 5,5 / 4$ and $9 / 7$) conveniently located one string higher than the chord root, and at most only two frets away from it. The 5th is conveniently located two strings higher than the root, one fret either above or below it. Low-odd-limit 6ths and 7ths are also easily accessible. Thus a huge variety of low-odd-limit nearly-just chords are extremely easy to play. The Kite Tuning combines most of the freedom of edos with most of the accuracy of just intonation.
The general concept of using only a subset of the frets of a large edo, with the full edo represented by multiple strings, takes two forms. In the first form, the partial edo that can be played on a single string is itself an edo, and the guitar has a fret at the octave. This form is widely known and used. For example, 24-edo can be played on a standard 12-edo guitar by detuning every other string by 50ϕ.

The second form, in which the guitar doesn't have a fret at the octave, is less well known. It has been explored deeply by Matthew Autry of Olympia, Washington. His work with ED4, ED8, ED16 etc. non-octave frettings directly inspired the Kite Tuning. Matthew's frettings tend to omit more than half the frets. Here are the guitars he has built and played:
Figure 1.1 - Matthew Autry's guitars

edo	possible intervals between adjacent open strings		
53 -edo $\div 3=17 \frac{2}{3}$	$14 \backslash 53 \approx 6 / 5$	$17 \backslash 53 \approx 5 / 4$	
65 -edo $\div 2=32 \frac{1}{2}$	$17 \backslash 65 \approx 6 / 5$	$21 \backslash 65 \approx 5 / 4$	
65 -edo $\div 5=13$	$11 \backslash 65 \approx 9 / 8$	$16 \backslash 65 \approx 32 / 27$	$21 \backslash 65 \approx 5 / 4$
72 -edo $\div 3=24$	$11 \backslash 72 \approx 10 / 9$	$14 \backslash 72 \approx 8 / 7$	$23 \backslash 72 \approx 5 / 4$
87 -edo $\div 3=29$	$13 \backslash 87 \approx 10 / 9$	$28 \backslash 87 \approx 5 / 4$	
118 -edo $\div 4=291 / 2$	$29 \backslash 118 \approx 32 / 27$		
130 -edo $\div 5=26$	$22 \backslash 130 \approx 9 / 8$	$32 \backslash 130 \approx 32 / 27$	$42 \backslash 130 \approx 5 / 4$
130 -edo $\div 4=32 \frac{1}{2} \times$	$21 \backslash 130 \approx 19 / 17$	$25 \backslash 130 \approx 8 / 7$	$29 \backslash 130 \approx 7 / 6$

Section 2 - About 41-edo

Dividing the octave into 41 equal steps approximates just intonation very closely. One edostep is 29.27ϕ, thus the maximum possible error is $\sim 15 \phi$, and the average error is $\sim 71 / 2 \phi$. But most primes are much better than average:
Figure 2.1-41-edo's error from Just Intonation for primes 2-19

prime	$2 / 1$	$3 / 2$	$5 / 4$	$7 / 4$	$11 / 8$	$13 / 8$	$17 / 16$	$19 / 16$
error	$0.0 ф$	$+0.48 \phi$	$-5.8 申$	$-3.0 ф$	$+4.8 \phi$	$+8.3 \phi$	$+12.1 \phi$	$-4.8 申$
name	P8	P5	vM3	Vm 7	$\wedge \wedge 4$	~ 6	$\wedge \mathrm{~m} 2$	m 3

Prime 3 is extremely accurate, and primes 5 and 7 are both flat, which means their errors partially cancel out in ratios such as $7 / 5$. Unfortunately prime 11 is sharp, so ratios such as $11 / 10$ are near the maximum error.
41 -edo can be notated with ups and downs notation. The enharmonics are $d^{6} 5$ and ${ }^{\wedge} d 2$, thus $C^{\#} 6=G$ and $C^{\wedge}=B^{\#}$.
Figure 2.2-41-edo notes, with ups and downs names, and nearby ratios, with color names

step	cents	name	ratio(s)		step	cents	name	ratio	
0	$0 ¢$	P1	1/1	w1	41	1200¢	P8	2/1	w8
1	29¢	${ }^{\wedge} 1, \mathrm{vvm} 2$	various commas		40	1171¢	v8	various intervals	
2	59¢	${ }^{\wedge} 1, \mathrm{vm} 2$	28/27	z2	39	1141¢	${ }^{\wedge} \mathrm{M} 7$	27/14	r7
3	88¢	vA1, m2	21/20	zg2	38	1112¢	M7	19/10	190g8
4	117¢	$\mathrm{A} 1,{ }^{\wedge} \mathrm{m} 2$	16/15, 15/14	g2, ry1	37	1083¢	vM7	15/8, 28/15	y7, zg8
5	146¢	~ 2	12/11	102	36	1054¢	~ 7	11/6	107
6	176¢	vM2	11/10, 10/9	$\log 2, \mathrm{y} 2$	35	1024¢	${ }^{\wedge} \mathrm{m} 7$	9/5, 20/11	g7, 1uy7
7	205¢	M2	9/8	w2	34	995¢	m7	16/9	w7
8	234¢	${ }^{\wedge} \mathrm{M} 2$	8/7	r2	33	966¢	vm7	7/4	z7
9	263¢	${ }^{\wedge} \mathrm{Vm} 3$	7/6	z3	32	$937 ¢$	${ }^{\wedge} \mathrm{M} 6$	12/7	r6
10	293¢	m3	19/16	1903	31	907¢	M6	27/16	w6
11	322¢	${ }^{\wedge} \mathrm{m} 3$	6/5	g3	30	878 ¢	vM6	5/3	y6
12	351¢	~ 3	11/9	103	29	849¢	~ 6	13/8	306
13	380¢	vM3	5/4	y3	28	$820 ¢$	${ }^{\wedge} \mathrm{m} 6$	8/5	g6
14	410¢	M3	14/11	$1 \mathrm{uz4}$	27	$790 ¢$	m6	11/7	1 or5
15	439¢	${ }^{\wedge} \mathrm{M} 3$	9/7	r3	26	761¢	vm6	14/9	z6
16	468¢	v4	21/16	z4	25	732¢	${ }^{\wedge} 5$	32/21	r5
17	498¢	P4	4/3	w4	24	702¢	P5	3/2	w5
18	527¢	${ }^{\wedge} 4$	27/20	g4	23	673 ¢	v5	40/27	y5
19	556¢	^^4	11/8	104	22	644¢	vv5	13/9	3u5
20	585¢	vA4, d5	45/32, 7/5	y4, zg5	21	615¢	A4, ${ }^{\wedge} 5$	10/7, 64/45	ry4, g5

The next chart is for accurately tuning 41-edo intervals using an electronic tuner, useful for checking the location of temporary cable-tie frets. The left-hand side translates the tuner's calibration frequency into a cents offset. The righthand side shows all 41 -edo notes. The last two columns show how to calibrate the tuner, and how many cents off-
center to tune. For example, note $\# 4$ is an ${ }^{\wedge} \mathrm{m} 2$ of 117ϕ. Tune the note to about a semitone above note $\# 0$. Then set the tuner to 444 hz , and tune the note just $1 申$ sharp.

TUNER	hertz	cents	41-EDO 0	P1	O¢	440	$0 ¢$
	420	-80.5¢	1	$\wedge 1$	29¢	448	-2¢
	421	-76.4¢	2	vm 2	59¢	430	-2ф
	422	-72.3¢	3	m2	88¢	437	$0 ¢$
	423	-68.2¢	4	${ }^{\wedge} \mathrm{m} 2$	117¢	444	$1 ¢$
	424	-64.1¢	5	~ 2	146 ${ }^{\text {d }}$	452	$0 ¢$
	425	-60.0¢	6	vM2	176 ${ }^{\text {d }}$	434	-1¢
	426	-56.0¢	7	M2	205 ${ }^{\text {¢ }}$	441	16
	427	-51.9¢	8	^M2	234 $¢$	449	-1¢
	428	-47.9¢	9	vm3	263¢	431	-1¢
	429	-43.8¢	10	m3	293¢	438	$1 ¢$
	430	-39.8¢	11	$\wedge \mathrm{m} 3$	322¢	446	-1¢
	431	-35.8¢	12	~3	351ф	428	-1¢
	432	-31.8¢	13	vM3	380¢	435	$0 ¢$
	433	-27.8¢	14	M3	410ф	442	2ϕ
	434	-23.8¢	15	^M3	439 $¢$	450	0¢
	435	-19.8¢	16	v4	468ф	432	$0 ¢$
	436	-15.8¢	17	P4	498¢	439	$2 ¢$
	437	-11.8¢	18	^4	527¢	447	$0 ¢$
	438	-7.9¢	19	~ 4	556 6	429	0ϕ
	439	-3.9¢	20	d5	585¢	436	16
	440	0.0¢	21	A4	615 ${ }^{\text {¢ }}$	444	-1¢
	441	3.9¢	22	~ 5	644¢	451	$1 ¢$
	442	7.9¢	23	v5	673¢	433	$1 ¢$
	443	11.8¢	24	P5	702¢	441	-1¢
	444	15.7¢	25	$\wedge 5$	732¢	448	$1 ¢$
	445	19.6¢	26	vm6	761¢	430	1¢
	446	23.4¢	27	m6	790¢	438	-2¢
	447	27.3¢	28	^m6	820¢	445	0ϕ
	448	31.2ϕ	29	~ 6	849 $¢$	453	-2ϕ
	449	35.1 ¢	30	vM6	878¢	434	2ϕ
	450	38.9¢	31	M6	907¢	442	-1¢
	451	42.7¢	32	^M6	937 ¢	449	2ϕ
	452	46.6¢	33	vm7	966 ${ }^{\text {¢ }}$	431	$2 ¢$
	453	50.4ф	34	m7	995 ${ }^{\text {¢ }}$	439	-1¢
	454	54.2ϕ	35	^m7	1024ф	446	$1 ¢$
	455	$58.0 ¢$	36	~7	1054ф	428	$2 ¢$
	456	61.8¢	37	vM7	1083¢	436	-1¢
	457	65.6¢	38	M7	1112ф	443	0¢
	458	69.4ф	39	^M7	1141¢	451	-1¢
	459	73.2ф	40	v8	1171ф	433	-2ф
	460	$77.0 ¢$	41	P8	1200ф	440	$0 ¢$

Section 3 - Fretboard Diagrams

Both versions of the Kite Tuning decrease the range of the guitar (the interval from the lowest open string to the highest) from the usual two octaves. The major tuning reduces it to a P12, and the minor tuning reduces it to a M10. Furthermore, because a given note only appears on every other string, the effective range is further reduced. Thus a guitar with 7 or 8 strings is recommended. For the major version, this gives a range of an octave plus either a vM7 or a vm10. For a minor version, the range is an octave plus either an ${ }^{\wedge} 5$ or a ~ 7.

Each version has advantages and disadvantages:

1. The minor version has extremely compact shapes for many common triads and tetrads, spanning only two frets. Most tetrads in the major version span at least four frets. (See section 4.)
2. The major version has 8 ves, 10 ths, 12 ths, etc. within easy reach, the minor version doesn't. For example, ${ }^{\wedge} 11 \approx$ $11 / 4$ is 4 strings above the chord root. The major version has it 4 frets above the root, but the minor version has it a hard-to-reach 8 frets above. This somewhat negates the previous point.
3. The minor version has the $\mathrm{m} 2, \sim 2$ and M 2 more accessible than the major version, which is perhaps better for playing melodies.
4. The major version has no P5 above the lowest two open strings. (However, there is a P12 five strings above.) The other open string notes do have a P5 above them, but it's two strings down and way up on the 24th fret. The minor version always has an accessible P5 above any note (unless it's on one of the upper two strings).
Even with the minor tuning, there is no vm3 above open strings. Therefore a chord that has its root on an open string may have limited voicings. Better to place the root a few frets up. This is another good reason to have 8 strings - the low string can be an ${ }^{\wedge} \mathrm{D}$ or a VD , so an E chord can have its root voiced as a low E and its 5 th voiced as a low B .
Neither version allows you to easily play a triad with a neutral 3rd, or a tetrad with a neutral 7th. Both versions make playing melodies with jumps of 2 or 4 edosteps (1 or 2 frets) very easy, but jumps of 3 or 5 edosteps ($1 \frac{1}{2}$ or $21 / 2$ frets) are awkward. Analogous to the harmonica, the layout of the instrument influences your decisions about what to play.
Other versions using other open string intervals are possible. Alternating vM3s and ${ }^{\wedge} \mathrm{m} 3 \mathrm{~s}$ has the disadvantage that chord shapes change depending on which string the root is on. Using a wider interval such as ${ }^{\wedge} \mathrm{M} 3$ or even P 4 makes the M2 less accessible, and makes dissonant intervals like the ${ }^{\wedge} 5$ and the $v 5$ more accessible. Using a narrower interval makes the octave, 10 ths, 12 ths, etc. very inaccessible (although possibly more accessible 5 strings up).
With either version, the guitar can be tuned by ear using unisons, 4ths, 5 ths and octaves. Unlike 12 -edo, the 4 ths and 5ths are so accurate that tuning errors won't accumulate much. The next table shows perfect intervals besides the obvious ones a few frets away. In the major version, a unison with an open string is on the 13th fret, 2 strings lower.

major version	unison $=13$ th fret, down 2 strings	4th $=15$ th fret, down 1 string	$8 v e=14$ th fret, up 1 string
minor version	unison $=11$ th fret, down 2 strings	4th $=14$ th fret, down 1 string	$8 v e=15$ th fret, up 1 string

41 -edo has seven varieties of $2 \mathrm{nds}, 3 \mathrm{rds}$, 6 th and 7 ths. Omitting every other note makes a 4 -band rainbow, shown in the interval diagrams with colors inspired by color notation. The three omitted notes appear on the edges of the diagram, and run minor - neutral - major. The major and minor notes are white, and the neutral notes are purple. Often but not always, the rainbow notes are lower odd limit than the purple or white notes. Gray notes are dissonant intervals only one edostep away from the 4 th, 5 th or 8 ve . (Although sometimes the ${ }^{\wedge} 11$ or v 11 can sound consonant.)
A guitar fretboard usually has dots at the m3, P4, P5, M6 and P8. However, the Kite Tuning has no frets at the P4, M6 or P8. The P5 is marked with a dot at the 12th fret. To make the markings symmetrical, and to indicate the 4-band rainbow, every 4th fret is marked with a dot. The note diagrams reflect this. An example with cable-tie frets:

The Kite Tuning－major version

6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	10
	$\begin{gathered} \mathrm{m} 13 \\ 790 \phi \\ 22 / 7 \end{gathered}$	$\begin{gathered} \sim 13 \\ 849 \not \subset \\ 13 / 4 \end{gathered}$	$\begin{aligned} & \text { M13 } \\ & 907 \phi \\ & 27 / 8 \end{aligned}$	Wvm7 966d 7／2	$\begin{gathered} \mathrm{W}^{\wedge} \mathrm{m} 7 \\ 1024 \varnothing \\ 18 / 5 \end{gathered}$	$\begin{gathered} \text { WvM7 } \\ 1083 \phi \\ 15 / 4 \end{gathered}$	$\begin{gathered} \mathrm{W}^{\wedge} \mathrm{M} 7 \\ 1141 \phi \\ 27 / 7 \end{gathered}$	$\begin{gathered} \text { WP8 } \\ 1200 ¢ \\ 4 / 1 \end{gathered}$	Wvm9 $1259 ¢$ $33 / 8$	$\begin{gathered} \mathrm{W}^{\wedge} \mathrm{m} 9 \\ 117 \phi \\ 30 / 7 \end{gathered}$	$\begin{gathered} \text { WvM9 } \\ 176 \phi \\ 22 / 5 \end{gathered}$	$\begin{gathered} \mathrm{W}^{\wedge} \mathrm{M} 9 \\ 234 \phi \\ 32 / 7 \end{gathered}$	$\begin{gathered} \text { Wm10 } \\ 293 \phi \\ 19 / 4 \end{gathered}$	$\begin{gathered} \mathrm{W} \sim 10 \\ 351 \phi \\ 44 / 9 \end{gathered}$	$\begin{gathered} \text { WM10 } \\ 410 \phi \\ 56 / 11 \end{gathered}$	Wv11 468ф 21／4
		$\begin{gathered} \mathrm{v} 11 \\ 468 \varnothing \\ 21 / 8 \end{gathered}$	$\begin{gathered} \wedge 11 \\ 527 \phi \\ 27 / 10 \end{gathered}$	$\begin{gathered} \mathrm{d} 12 \\ 585 申 \\ 14 / 5 \end{gathered}$	$\begin{aligned} & \text { vv12 } \\ & 644 \varnothing \\ & 26 / 9 \end{aligned}$	$\left(\begin{array}{c}\text { P12 } \\ 702 ¢ \\ 3 / 1\end{array}\right)$	$\begin{gathered} \text { vm13 } \\ 761 申 \\ 28 / 9 \end{gathered}$	$\begin{gathered} { }^{\wedge} \mathrm{m} 13 \\ 820 ¢ \\ 16 / 5 \end{gathered}$	$\begin{gathered} \text { vM13 } \\ 878 \not \subset \\ 10 / 3 \end{gathered}$	$\begin{aligned} & \wedge \mathrm{M} 13 \\ & 937 \phi \\ & 24 / 7 \end{aligned}$	Wm7 995¢ 32／9	$\begin{gathered} \text { W~7 } \\ 1054 \varnothing \\ 11 / 3 \end{gathered}$	$\begin{gathered} \text { WM7 } \\ 1112 申 \\ 19 / 5 \end{gathered}$	$\begin{gathered} \text { Wv8 } \\ 1171 \phi \end{gathered}$	$\begin{gathered} W^{\wedge} 8 \\ 1229 \phi \end{gathered}$	
$\begin{gathered} \text { v8 } \\ 1171 \phi \end{gathered}$	$\begin{gathered} \wedge 8 \\ 1229 \varnothing \end{gathered}$	$\begin{gathered} \mathrm{m} 9 \\ 1288 \phi \\ 21 / 10 \end{gathered}$	$\begin{gathered} \sim 9 \\ 146 \not \subset \\ 24 / 11 \end{gathered}$	$\begin{gathered} \text { M9 } \\ 205 申 \\ 9 / 4 \end{gathered}$	$\begin{gathered} \text { Vm10 } \\ 263 \phi \\ 7 / 3 \end{gathered}$	$\begin{gathered} { }_{\mathrm{m} 10} \mathrm{~m} \\ 322 \phi \\ 12 / 5 \end{gathered}$	$\begin{gathered} \text { vM10 } \\ 380 ¢ \\ 5 / 2 \end{gathered}$	$\begin{array}{l\|} \hline \\ \wedge \\ 439 \varnothing \\ 18 / 7 \end{array}$	$\left(\begin{array}{c}\mathrm{P} 11 \\ 498 \mathrm{c} \\ 8 / 3\end{array}\right)$	$\begin{aligned} & \wedge \wedge 11 \\ & 556 \not \subset \\ & 11 / 4 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & 615 \phi \\ & 20 / 7 \end{aligned}$	$\begin{gathered} \mathrm{v} 12 \\ 673 \phi \end{gathered}$	$\begin{gathered} \wedge 12 \\ 732 \phi \end{gathered}$	$\begin{aligned} & \mathrm{m} 13 \\ & 790 ф \\ & 22 / 7 \end{aligned}$	$\begin{gathered} \sim 13 \\ 849 \phi \\ 13 / 4 \end{gathered}$	$\begin{aligned} & \text { M13 } \\ & 907 \phi \\ & 27 / 8 \end{aligned}$
$\begin{gathered} \text { m6 } \\ 790 \not \\ 11 / 7 \end{gathered}$	$\begin{gathered} \sim 6 \\ 849 \not \subset \\ 13 / 8 \end{gathered}$	$\begin{gathered} \text { M6 } \\ 907 \phi \\ 27 / 16 \end{gathered}$	vm7 966 c 7／4	$\begin{gathered} \wedge \mathrm{m} 7 \\ 1024 \phi \\ 9 / 5 \end{gathered}$	$\begin{gathered} \text { vM7 } \\ 1083 \phi \\ 15 / 8 \end{gathered}$	$\begin{array}{c\|} \hline \wedge \mathrm{M} 7 \\ 1141 \phi \\ 27 / 14 \\ \hline \end{array}$	P8 $1200 ¢$ $2 / 1$	$\begin{gathered} \text { Vm9 } \\ 1259 \phi \\ 33 / 16 \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{m} 9 \\ & 117 申 \\ & 15 / 7 \end{aligned}$	$\begin{aligned} & \text { vM9 } \\ & 176 \nmid \\ & 11 / 5 \end{aligned}$	$\begin{gathered} \wedge \text { ^M9 } \\ 234 \varnothing \\ 16 / 7 \end{gathered}$	$\begin{gathered} \text { m10 } \\ 293 \phi \\ 19 / 8 \end{gathered}$	$\begin{gathered} \sim 10 \\ 351 \phi \\ 22 / 9 \end{gathered}$	$\begin{aligned} & \text { M10 } \\ & 410 ф \\ & 28 / 11 \end{aligned}$	$\begin{gathered} \mathrm{v} 11 \\ 468 \varnothing \\ 21 / 8 \end{gathered}$	$\begin{gathered} \wedge 11 \\ 527 \phi \\ 27 / 10 \end{gathered}$
	$\begin{gathered} v 4 \\ 468 \varnothing \end{gathered}$	$\begin{gathered} \wedge \\ 527 \phi \end{gathered}$	$\begin{gathered} \mathrm{d} 5 \\ 585 申 \\ 7 / 5 \end{gathered}$	$\begin{aligned} & \text { vv5 } \\ & 644 \nmid \\ & 13 / 9 \end{aligned}$	$\left(\begin{array}{c} \mathrm{P} 5 \\ 702 \mathrm{~d} \\ 3 / 2 \end{array}\right)$	$\begin{aligned} & \text { vm6 } \\ & 761 \varnothing \\ & 14 / 9 \end{aligned}$	$\begin{gathered} { }_{\mathrm{m} 66} \\ 820 ¢ \\ 8 / 5 \end{gathered}$	$\begin{gathered} \text { vM6 } \\ 878 ¢ \\ 5 / 3 \end{gathered}$	$\begin{aligned} & \text { ^M6 } \\ & 937 \phi \\ & 12 / 7 \end{aligned}$	$\begin{gathered} \text { m7 } \\ 995 \phi \\ 16 / 9 \end{gathered}$	$\begin{gathered} \sim 7 \\ 1054 \nprec \\ 11 / 6 \end{gathered}$	$\begin{gathered} \text { M7 } \\ 1112 \phi \\ 19 / 10 \end{gathered}$	$\begin{aligned} & \text { V8 } \\ & 1171 \phi \end{aligned}$	$\begin{gathered} \wedge 8 \\ 1229 \phi \end{gathered}$		
$\begin{gathered} \wedge \\ 29 \phi \end{gathered}$	$\begin{gathered} \mathrm{m} 2 \\ 88 \not \\ 21 / 20 \end{gathered}$	$\begin{gathered} \sim 2 \\ 146 \phi \\ 12 / 11 \end{gathered}$	$\begin{gathered} \text { M2 } \\ 205 \phi \\ 9 / 8 \end{gathered}$	$\begin{gathered} \text { vm3 } \\ 263 \phi \\ 7 / 6 \end{gathered}$	$\begin{gathered} { }^{\mathrm{m} 3} 3 \\ 322 \phi \\ 6 / 5 \end{gathered}$	$\begin{gathered} \text { vM3 } \\ 380 ¢ \\ 5 / 4 \end{gathered}$	$\begin{gathered} \wedge \mathrm{M} 3 \\ 439 \varnothing \\ 9 / 7 \end{gathered}$	$\begin{gathered} \mathrm{P} 4 \\ 498 \mathrm{c} \\ 4 / 3 \end{gathered}$	$\begin{gathered} \wedge \wedge 4 \\ 556 \not \subset \\ 11 / 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { A4 } \\ 615 \phi \\ 10 / 7 \end{gathered}$	$\begin{gathered} \text { v5 } \\ 673 \varnothing \end{gathered}$	$\begin{gathered} \wedge 5 \\ 732 \phi \end{gathered}$	$\begin{gathered} \text { m6 } \\ 790 \not \\ 11 / 7 \end{gathered}$	$\begin{gathered} \sim 6 \\ 849 \phi \\ 13 / 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { M6 } \\ 907 d \\ 27 / 16 \end{array}$	
$\begin{gathered} \sim 6 \\ 849 \not \subset \\ 9 / 11 \end{gathered}$	$\begin{gathered} \text { M6 } \\ 907 \phi \\ 27 / 32 \end{gathered}$	Vm7 $966 ¢$ $7 / 8$	$\wedge \mathrm{m} 7$ $1024 ¢$ $9 / 10$	$\begin{aligned} & \text { vM7 } \\ & 1083 \phi \\ & 15 / 16 \end{aligned}$	$\begin{gathered} \wedge \mathrm{M} 7 \\ 1141 \phi \\ 27 / 28 \end{gathered}$	$\left(\begin{array}{c}\text { P1 } \\ 0 \mathrm{C} \\ 1 / 1\end{array}\right.$	$\begin{gathered} \text { vm2 } \\ 59 \phi \\ 28 / 27 \end{gathered}$	$\begin{gathered} { }^{\wedge} \mathrm{m} 2 \\ 117 \phi \\ 16 / 15 \\ \hline \end{gathered}$	$\begin{aligned} & \text { vM2 } \\ & 176 \not \subset \\ & 10 / 9 \end{aligned}$	$\begin{gathered} \wedge \mathrm{M} 2 \\ 234 \not \subset \\ 8 / 7 \end{gathered}$	$\begin{gathered} \text { m3 } \\ 293 \phi \\ 19 / 16 \end{gathered}$	$\begin{gathered} \sim 3 \\ 351 申 \\ 11 / 9 \end{gathered}$	$\begin{gathered} \text { M3 } \\ 410 ф \\ 14 / 11 \end{gathered}$	$\begin{gathered} \text { v4 } \\ 468 \varnothing \end{gathered}$	$\begin{gathered} \wedge \\ 527 \phi \end{gathered}$	

The Kite Tuning - major version

open strings	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$\begin{aligned} & { }^{\wedge} \mathrm{E} \\ & \mathrm{vF} \end{aligned}$	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF}^{\#} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \wedge{ }^{\wedge}{ }^{\#} \\ & \mathrm{vvG} \end{aligned}$	G	$\begin{aligned} & \wedge \wedge \mathrm{G} \\ & \mathrm{vA} b \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{gathered} \mathrm{vA}^{\#} \\ \mathrm{~B} b \end{gathered}$	vvB	B	${ }^{\wedge \wedge} \mathrm{B}$ vC	${ }^{\wedge} \mathrm{C}$	$\begin{aligned} & \mathrm{vC} C^{\#} \\ & \mathrm{D} b \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & { }^{\wedge} \mathrm{D} \\ & \mathrm{vE} b \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ \wedge \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{gathered} { }^{\wedge \wedge} \mathrm{F} \\ \mathrm{vG} b \end{gathered}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG
$\begin{gathered} \mathrm{vC}^{\#} \\ \mathrm{D} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & { }^{\wedge} \mathrm{D} \\ & \mathrm{vE} b \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ { }^{\wedge} \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{F} \\ & \mathrm{vG} b \end{aligned}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{aligned} & \mathrm{vG} \neq \\ & \mathrm{Ab} \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{G}^{\#} \\ & \mathrm{vvA} \end{aligned}$	A	$\begin{aligned} & \wedge^{\wedge} \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{gathered} \mathrm{A}^{\#} \\ { }^{\wedge} \mathrm{B} b \end{gathered}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{C} \\ & \mathrm{vD} b \end{aligned}$	$\begin{gathered} \mathrm{C}^{\#} \\ { }^{\wedge} \mathrm{D} \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{gathered} \mathrm{vD} \mathrm{D}^{\#} \\ \mathrm{E} b \end{gathered}$
A	$\begin{aligned} & \wedge \wedge \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{gathered} \mathrm{A}^{\#} \\ \wedge \mathrm{~B} b \end{gathered}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{aligned} & { }^{\wedge} \mathrm{C} \\ & \mathrm{vDb} \end{aligned}$	$\begin{gathered} \mathrm{C}^{\#} \\ { }^{\wedge} \mathrm{D} b \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{gathered} \mathrm{vD} \mathrm{D}^{\#} \\ \mathrm{E} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{vvE} \end{aligned}$	E	$\begin{aligned} & { }^{\wedge} \mathrm{E} \\ & \mathrm{vF} \end{aligned}$	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \text { ^^ }{ }^{\#} \\ & \mathrm{vvG} \end{aligned}$	G	$\begin{aligned} & { }^{\wedge} \mathrm{G} \\ & \mathrm{vAb} \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{aligned} & \mathrm{va} \neq \\ & \mathrm{B} b \end{aligned}$	vvB	B
${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF} \# \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \text { ^F\# } \\ & \text { vvG } \end{aligned}$	G	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{G} \\ & \mathrm{vA} b \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{gathered} \mathrm{vA}^{\#} \\ \mathrm{~B} b \end{gathered}$	vvB	B	$\begin{aligned} & { }^{\wedge} \mathrm{B} \\ & \mathrm{vC} \end{aligned}$	${ }^{\wedge} \mathrm{C}$	$\begin{aligned} & \mathrm{vC} \mathrm{C}^{\#} \\ & \mathrm{D} b \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{D} \\ & \mathrm{vE} b \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ { }^{\wedge} \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{aligned} & \wedge \wedge \mathrm{F} \\ & \mathrm{vG} b \end{aligned}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$
$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{D} \\ & \mathrm{vE} b \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ \text { ^^ } \mathrm{E} \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{gathered} { }^{\wedge \wedge} \mathrm{F} \\ \mathrm{vG} b \end{gathered}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{aligned} & \mathrm{vG}^{\#} \\ & \mathrm{Ab} \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{G}^{\#} \\ & \text { vvA } \end{aligned}$	A	$\begin{aligned} & \wedge \wedge \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{gathered} \mathrm{A}^{\#} \\ \text { ^B } \mathrm{B} \end{gathered}$	vB	$\begin{gathered} \text { ^B } \\ \mathrm{vvC} \end{gathered}$	C	$\begin{gathered} \wedge \wedge \mathrm{C} \\ \mathrm{vDb} \end{gathered}$	$\begin{gathered} C^{\#} \\ { }^{\wedge} \mathrm{D} b \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{gathered} \mathrm{vD} \mathrm{D}^{\#} \\ \mathrm{E} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{vvE} \end{aligned}$
$\begin{aligned} & \wedge \wedge \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{aligned} & \mathrm{A}^{\#} \\ & \wedge \mathrm{~A} b \end{aligned}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{gathered} { }^{\wedge} \mathrm{C} \\ \mathrm{vD} b \end{gathered}$	$\begin{gathered} \mathrm{C}^{\#} \\ \wedge \mathrm{D} \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{aligned} & \mathrm{vD}^{\#} \\ & \mathrm{~Eb} \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{vvE} \end{aligned}$	E	${ }^{\wedge \wedge} \mathrm{E}$ vF	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF} \\ & \mathrm{G} b \end{aligned}$	$\begin{array}{\|l\|} \wedge^{\wedge} \mathrm{F}^{\#} \\ \mathrm{vvG} \end{array}$	G	$\begin{aligned} & \wedge \wedge \mathrm{G} \\ & \mathrm{vAb} \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{aligned} & \mathrm{vA}^{\#} \\ & \mathrm{~B} b \end{aligned}$	vvB	B	$\begin{aligned} & { }^{\wedge} \mathrm{B} \\ & \mathrm{vC} \end{aligned}$
$\begin{aligned} & \mathrm{vF}^{\#} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{F} \\ & \mathrm{vvG} \end{aligned}$	G	${ }^{\wedge \wedge} \mathrm{G}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{gathered} \mathrm{vA} \neq \\ \mathrm{B} b \end{gathered}$	vvB	B	$\begin{aligned} & \wedge \wedge \mathrm{B} \\ & \mathrm{vC} \end{aligned}$	${ }^{\wedge} \mathrm{C}$	$\begin{gathered} \mathrm{vC} \mathrm{C}^{\#} \\ \mathrm{D} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & { }^{\wedge} \mathrm{D} \\ & \mathrm{vE} b \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ { }^{\wedge} \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{gathered} \wedge \wedge \mathrm{F} \\ \mathrm{vG} b \end{gathered}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{aligned} & \mathrm{vG}^{\#} \\ & \mathrm{Ab} \end{aligned}$
D	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{D} \\ & \mathrm{vEb} \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ \text { ^} \mathrm{E} . \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{aligned} & \wedge^{\wedge} \mathrm{F} \\ & \mathrm{vG} b \end{aligned}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{aligned} & \mathrm{vG}^{\#} \\ & \mathrm{Ab} \end{aligned}$	${ }^{\wedge} \mathrm{G}^{\#}$ vvA	A	$\begin{aligned} & \wedge \wedge \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{gathered} \mathrm{A}^{\#} \\ \wedge \mathrm{~B} b \end{gathered}$	vB	$\begin{gathered} \wedge \\ \mathrm{n} \mathrm{~B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{aligned} & { }^{\wedge} \mathrm{C} \\ & \mathrm{vD} b \end{aligned}$	$\begin{gathered} \mathrm{C}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{gathered} \mathrm{vD}{ }^{\#} \\ \mathrm{~Eb} \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{vvE} \end{aligned}$	E
nut \rightarrow	\leftarrow																			towards the bridge \rightarrow				

${ }^{\wedge} \mathrm{E} / \mathrm{V} / \mathrm{FF}$	is tuned to	F	431 hz	-1¢	$\underline{\text { or }}$	440 hz	-36.5¢
$v C^{\#} / \mathrm{Db}$	is tuned to	$\mathrm{C}^{\#} / \mathrm{D} b$	436 hz	-1¢	$\underline{\text { or }}$	440 hz	-17¢
A	is tuned to	A	441 hz	-1¢	or	440 hz	+2.5¢
${ }^{\wedge} \mathrm{F}$	is tuned to	F	446 hz	-1¢	or	440 hz	+22¢
${ }^{\wedge} \mathrm{C} \# / \mathrm{vvD}$	is tuned to	$C^{\#} / \mathrm{D} b$	451 hz	-1¢	$\underline{\text { or }}$	440 hz	+41.5¢
${ }^{\wedge} \mathrm{A} / \mathrm{vB}$ b	is tuned to	B b	430 hz	+1¢	$\underline{\text { or }}$	440 hz	-39¢
$\mathrm{vF} \mathrm{F}^{\prime} / \mathrm{Gb}$	is tuned to	F\#/Gb	435 hz	0¢	or	440 hz	-19.5¢
D	is tuned to	D	440 hz	$0 ¢$	or	440 hz	0¢

The Kite Tuning - minor version

5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	10	11	12
${ }^{\wedge} \mathrm{M} 10$	P11	${ }^{\wedge \wedge} 11$	A11	v12	${ }^{\wedge} 12$	m13	~ 13	M13	Wvm7	$\mathrm{W}^{\wedge} \mathrm{m} 7$	WvM7	$\mathrm{W}^{\wedge} \mathrm{M} 7$	WP8	Wvm9	$\mathrm{W}^{\wedge} \mathrm{m} 9$	WvM9	$\mathrm{W}^{\wedge} \mathrm{M} 9$
439¢	498¢	556d	615¢	673¢	732¢	790¢	849¢	907¢	966¢	1024¢	1083¢	1141¢	1200¢	1259¢	117¢	176¢	234¢
18/7	8/3	11/4	20/7			22/7	13/4	27/8	7/2	18/5	15/4	27/7	4/1)	33/8	30/7	22/5	32/7
${ }^{\wedge} \mathrm{m} 9$	vM9	${ }^{\wedge} \mathrm{M} 9$	m10	~10	M10	v11	${ }^{\wedge} 11$	d12	vv12	P12	vm13	${ }^{\wedge} \mathrm{m} 13$	vM13	${ }^{\wedge} \mathrm{M} 13$	Wm7	W~7	WM7
117¢	176¢	234d	293¢	351 ¢	410¢	468¢	527¢	585¢	644¢	702¢	761¢	820¢	878¢	937¢	995¢	1054¢	1112¢
15/7	11/5	16/7	19/8	22/9	28/11	21/8	27/10	14/5	26/9	3/1)	28/9	16/5	10/3	24/7	32/9	11/3	19/5
m7	~ 7	M7	v8	${ }^{\wedge} 8$	m9	~ 9	M9	vm10	${ }^{\wedge} \mathrm{m} 10$	vM10	${ }^{\wedge} \mathrm{M} 10$	P11	${ }^{\wedge \wedge} 11$	A11	2	2	
995¢	1054¢	1112¢	1171¢	1229¢	1288¢	146¢	205¢	263¢	322¢	380¢	439¢	498¢	556¢	615¢	673¢	732¢	
16/9	11/6	19/10			21/10	24/11	9/4	7/3	12/5	5/2	18/7	8/3	11/4	20/7			
v5	${ }^{\wedge} 5$	m6	~ 6	M6	vm7	${ }^{\wedge} \mathrm{m} 7$	vM7	${ }^{\wedge} \mathrm{M} 7$	P8	vm9	${ }^{\text {m m9 }}$	vM9	${ }^{\wedge} \mathrm{M} 9$	m10	~ 10	M10	
673¢	732¢	$790 ¢$	849¢	907¢	966¢	1024¢	1083¢	1141¢	1200¢	1259¢	117¢	176¢	234¢	293¢	351¢	410¢	
		11/7	13/8	27/16	7/4	9/5	15/8	27/14	(2/1)	33/16	15/7	11/5	16/7	19/8	22/9	28/11	
~ 3	M3	v4	${ }^{\wedge} 4$	d5	vv5	P5	vm6	${ }^{\wedge} \mathrm{m} 6$	vM6	${ }^{\wedge} \mathrm{M} 6$	m7	~ 7	M7	v8	${ }^{\wedge} 8$		
351¢	410¢	468¢	527¢	585¢	644¢	702¢	761¢	820 ¢	878¢	937¢	995¢	1054¢	1112¢	1171¢	1229¢		
11/9	14/11			7/5	13/9	3/2	14/9	8/5	5/3	12/7	16/9	11/6	19/10				
${ }^{\wedge} 1$	m2	~ 2	M2	vm3	${ }^{1} \mathrm{~m} 3$	vM3	${ }^{\wedge} \mathrm{M} 3$	P4	${ }^{\wedge} 4$	A4	v5	${ }^{\wedge} 5$	m6	~ 6	M6		
29¢	88¢	146¢	205¢	263 ¢	322 ¢	$380 ¢$	439¢	498¢	556¢	615¢	$673 ¢$	732¢	790¢	849¢	907¢		
	21/20	12/11	9/8	7/6	6/5	5/4	9/7	4/3	11/8	10/7			11/7	13/8	27/16		
M6	vm7	${ }^{\text {m }}$ 7	vM7	${ }^{\wedge} \mathrm{M} 7$	P1	vm2	${ }^{\wedge} \mathrm{m} 2$	vM2	${ }^{\wedge} \mathrm{M} 2$	m3	~3	M3	v4	${ }^{\wedge} 4$			
907¢	966¢	1024¢	1083¢	1141¢	0 C	59¢	117¢	176¢	234¢	293¢	351¢	410¢	468¢	527¢			
27/32	7/8	9/10	15/16	27/28	1/1	28/27	16/15	10/9	8/7	19/16	11/9	14/11					

The Kite Tuning - minor version

open strings	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$\begin{aligned} & { }^{\wedge \wedge} \mathrm{C} \\ & \mathrm{vDb} \end{aligned}$	$\begin{gathered} \mathrm{C}^{\#} \\ \wedge \mathrm{D} b \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{aligned} & \hline \text { vD }{ }^{\#} \\ & \text { Eb } \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{vvE} \end{aligned}$	E	$\begin{gathered} { }^{\wedge} \mathrm{E} \\ \mathrm{vF} \end{gathered}$	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF}{ }^{\#} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \wedge \mathrm{F}^{\#} \\ & \mathrm{vvG} \end{aligned}$	G	$\begin{aligned} & { }^{\wedge} \mathrm{G} \\ & \mathrm{vA} b \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{aligned} & \mathrm{vA} \neq \\ & \mathrm{B} b \end{aligned}$	vvB	B	$\begin{aligned} & { }^{\wedge} \mathrm{B} \\ & \mathrm{vC} \end{aligned}$	${ }^{\wedge} \mathrm{C}$	$\begin{gathered} \mathrm{vC} \mathrm{C}^{\#} \\ \mathrm{D} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & \wedge^{\wedge} \mathrm{D} \\ & \mathrm{vEb} \end{aligned}$
${ }^{\wedge} \mathrm{A}$	$\begin{gathered} \mathrm{vA}^{\#} \\ \mathrm{~B} b \end{gathered}$	vvB	B	$\begin{gathered} { }^{\wedge} \mathrm{B} \\ \mathrm{vC} \end{gathered}$	${ }^{\wedge} \mathrm{C}$	$\begin{aligned} & \mathrm{vC} \mathrm{C}^{\#} \\ & \mathrm{D} b \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	${ }^{\wedge}{ }^{\mathrm{D}}$ vEb	$\begin{gathered} \mathrm{D}^{\#} \\ { }^{\wedge} \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{gathered} { }^{\wedge \wedge} \mathrm{F} \\ \mathrm{vG} b \end{gathered}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{aligned} & \mathrm{vG}^{\#} \\ & \mathrm{~A} b \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{G}^{\#} \\ & \mathrm{vvA} \end{aligned}$	A	${ }^{\wedge} \mathrm{A}$ vBb	$\begin{gathered} A^{\#} \\ \wedge B b \end{gathered}$	vB	$\begin{gathered} \text { ^B } \\ \mathrm{vvC} \end{gathered}$
$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{aligned} & \mathrm{vG}^{\#} \\ & \mathrm{Ab} \end{aligned}$	$\begin{aligned} & \wedge \mathrm{N}^{\#} \\ & \mathrm{vvA} \end{aligned}$	A	$\begin{array}{\|l\|} \wedge \wedge \mathrm{A} \\ \mathrm{vB} b \end{array}$	$\begin{gathered} \mathrm{A}^{\#} \\ { }^{\wedge} \mathrm{B} b \end{gathered}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{gathered} { }^{\wedge \wedge} \mathrm{C} \\ \mathrm{vD} b \end{gathered}$	$\begin{gathered} \mathrm{C}^{\#} \\ \wedge \\ \\ \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{aligned} & \mathrm{vD} \mathrm{D}^{\#} \\ & \mathrm{~Eb} \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{va} \end{aligned}$	E	$\begin{gathered} { }^{\wedge}{ }^{\wedge} \mathrm{E} \\ \mathrm{vF} \end{gathered}$	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \text { ^F\# } \\ & \text { vvG } \end{aligned}$	G	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{G} \\ & \mathrm{vAb} \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$
vD\# Eb	$\begin{aligned} & { }^{\wedge} \mathrm{D}^{\#} \\ & \mathrm{vvE} \end{aligned}$	E	$\begin{aligned} & { }^{\wedge} \mathrm{E} \\ & \mathrm{vF} \end{aligned}$	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF} \# \\ & \mathrm{~Gb} \end{aligned}$	$\begin{aligned} & \wedge \mathrm{F} \# \\ & \mathrm{vvG} \end{aligned}$	G	$\begin{aligned} & \wedge \wedge \mathrm{G} \\ & \mathrm{vAb} \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{array}{c\|} \hline \mathrm{vA}^{\#} \\ \mathrm{~B} b \end{array}$	vvB	B	$\begin{aligned} & { }^{\wedge} \mathrm{B} \\ & \mathrm{vC} \end{aligned}$	${ }^{\wedge} \mathrm{C}$	$\begin{aligned} & \mathrm{vC} \mathrm{C}^{\#} \\ & \mathrm{D} b \end{aligned}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	${ }^{\wedge} \mathrm{D}$ vEb	$\begin{gathered} \mathrm{D}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F
$\begin{aligned} & { }^{\wedge}{ }^{\mathrm{B}} \\ & \mathrm{vC} \end{aligned}$	${ }^{\wedge} \mathrm{C}$	$\begin{gathered} \mathrm{vC} \mathrm{C}^{\#} \\ \mathrm{D} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\#} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{D} \\ & \mathrm{vEb} \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ { }^{\wedge} \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{gathered} \wedge \wedge \mathrm{F} \\ \mathrm{vG} b \end{gathered}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{gathered} \mathrm{vG}^{\#} \\ \mathrm{Ab} \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{G}^{\#} \\ & \text { vvA } \end{aligned}$	A	$\begin{aligned} & \wedge \wedge \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{aligned} & \mathrm{A}^{\#} \\ & \wedge \mathrm{~B} b \end{aligned}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{gathered} { }^{\wedge \wedge} \mathrm{C} \\ \mathrm{vD} b \end{gathered}$	$\begin{gathered} \mathrm{C}^{\#} \\ { }^{\wedge} \mathrm{D} b \end{gathered}$	vD
$\begin{aligned} & { }^{\wedge} \mathrm{G}^{\#} \\ & \mathrm{vvA} \end{aligned}$	A	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{gathered} A^{\#} \\ \wedge B b \end{gathered}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{gathered} { }^{\wedge \wedge} \mathrm{C} \\ \mathrm{vDb} \end{gathered}$	$\begin{gathered} \mathrm{C}^{\#} \\ \wedge \mathrm{D} b \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{gathered} \hline \mathrm{vD} \mathrm{Z}^{\#} \\ \mathrm{~Eb} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} { }^{\wedge} \mathrm{D}^{\#} \\ \mathrm{vvE} \end{array}$	E	$\begin{gathered} { }^{\wedge} \mathrm{E} \\ \mathrm{vF} \end{gathered}$	${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF}^{\#} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \wedge \\ & \wedge \\ & \mathrm{V} \mathrm{~F}^{\#} \end{aligned}$	G	$\begin{aligned} & \wedge \wedge \mathrm{G} \\ & \mathrm{vA} b \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vA	\wedge A	$\begin{gathered} \mathrm{vA}^{\#} \\ \mathrm{~B} b \end{gathered}$	vvB
${ }^{\wedge} \mathrm{F}$	$\begin{aligned} & \mathrm{vF}^{\#} \\ & \mathrm{G} b \end{aligned}$	$\begin{aligned} & \wedge \mathrm{F} \# \\ & \mathrm{vvG} \end{aligned}$	G	$\begin{aligned} & { }^{\wedge \wedge} \mathrm{G} \\ & \mathrm{vA} b \end{aligned}$	$\begin{gathered} \mathrm{G}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vA	${ }^{\wedge} \mathrm{A}$	$\begin{aligned} & \mathrm{vA} \neq \\ & \mathrm{B} b \end{aligned}$	vvB	B	$\begin{aligned} & { }^{\wedge} \mathrm{B} \\ & \mathrm{vC} \end{aligned}$	${ }^{\wedge} \mathrm{C}$	$\begin{gathered} \mathrm{vC} \mathrm{C}^{\#} \\ \mathrm{D} b \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{C}^{\ddagger} \\ & \mathrm{vvD} \end{aligned}$	D	$\begin{aligned} & \wedge \wedge \mathrm{D} \\ & \mathrm{vE} b \end{aligned}$	$\begin{gathered} \mathrm{D}^{\#} \\ \wedge \mathrm{E} b \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	$\begin{gathered} { }^{\wedge \wedge} \mathrm{F} \\ \mathrm{vG} b \end{gathered}$	$\begin{gathered} \mathrm{F}^{\#} \\ { }^{\wedge} \mathrm{G} b \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$
D	$\begin{aligned} & { }^{\wedge} \mathrm{D} \\ & \mathrm{vEb} \end{aligned}$	$\begin{gathered} \hline \mathrm{D}^{\#} \\ \wedge \mathrm{n} \mathrm{E}, \end{gathered}$	vE	${ }^{\wedge} \mathrm{E}$	F	${ }^{\wedge} \mathrm{F}$ vGb	$\begin{gathered} \mathrm{F}^{\#} \\ \wedge \\ \\ \end{gathered}$	vG	${ }^{\wedge} \mathrm{G}$	$\begin{gathered} \hline \mathrm{vG}^{\#} \\ \mathrm{Ab} \end{gathered}$	$\begin{aligned} & { }^{\wedge} \mathrm{G}^{\#} \\ & \mathrm{vvA} \end{aligned}$	A	$\begin{aligned} & \wedge \wedge \mathrm{A} \\ & \mathrm{vB} b \end{aligned}$	$\begin{gathered} \mathrm{A}^{\#} \\ \wedge \mathrm{~A} b \end{gathered}$	vB	$\begin{gathered} \wedge \mathrm{B} \\ \mathrm{vvC} \end{gathered}$	C	$\begin{aligned} & { }^{\wedge} \mathrm{C} \\ & \mathrm{vDb} \end{aligned}$	$\begin{gathered} \mathrm{C}^{\#} \\ \wedge \mathrm{D} b \end{gathered}$	vD	${ }^{\wedge} \mathrm{D}$	$\begin{gathered} \mathrm{vD}^{\#} \\ \mathrm{E} b \end{gathered}$	${ }^{\wedge} \mathrm{D}^{\#}$ vvE	E
nut \rightarrow																				towards the bridge \rightarrow				

Section 4 - Chord Shapes

41-edo chords can be named with ups and downs notation as downmajor-7, upminor-6, etc. They can also be named with color notation as yo-7, sub-6, etc. $\mathrm{Ru}=$ upmajor, yo $=$ downmajor, $\mathrm{gu}=$ upminor and $\mathrm{zo}=$ downminor. Chord shapes in the lattice can be translated into chord shapes on the fretboard, and vice versa. Four basic 7-limit triads:

The upminor (gu) chord is the octave inverse of the down (yo) chord, i.e. it's the down chord turned upside-down. Because of this, both its lattice shape and its fretboard shape is the down shape rotated 180 degrees:

${ }^{\circ} \mathrm{m}$ or g chord - major version							
					w8		
			w5				
			g 3				
				w1			
		w5					
		g3					
			w1				

v or y chord - major version							
					w8		
			w5				
				y3			
				w1			
		w5					
			y3				
			w1				

The downminor (zo) and up (ru) triads have a similar symmetry (as do the sus2 and sus4 chords):

Vm or z chord - major version							
					w8		
			w5				
		z3					
				w1			
		w5					
	z3						
			w1				

vm or z chord - minor version									
								w8	
					w5				
			z3						
				w1					
		w5							
z3									
	w1								

^ or r chord - major version							
					w8		
			w5				
					r3		
				w1			
		w5					
				r3			
			w1				

\wedge or r chord - minor version										
									w8	
						w 5				
							r 3			
					w 1					
		w5								
			r3							
	w1									

In conventional music theory, because Amin7 and Cmaj6 have the same notes, the min7 chord and the maj6 chord are said to be homonyms of each other. This concept is extended to just intonation for two chords containing the same ratios, and hence having the same lattice shape. The next diagram indicates homonym pairs with an equal sign:

The homonym concept in a 41-edo context equates two chords with the same edostep intervals in the same order. For example, the $\mathrm{y}(\mathrm{yy} 5)$ and $\mathrm{y}(\mathrm{ry} 5)$ chords are 41 -edo homonyms but not just intonation homonyms.
Har and sub (h and s) stand for harmonic and subharmonic. The har-7 and sub-7 chords are octave inverses of each other. Their 41-edo names are down-7 and downminor-7 flat-5 (or down-half-dim).
Since the octave appears 3 strings from the root, every tetrad has two notes on one string. One note can be dropped, or can be alternated with its string-mate.

v7 or h7 chord - major version							
	z7				w8		
			w5				
				y3			
z7				w1			
		w5					
			y3				
			w1				

$\mathrm{vm} 7(b 5)$ or s7 chord - major version							
	z 7				w8		
	zg 5						
		z 3					
z 7				w 1			
zg 5							
	z 3						
			w 1				

The upminor-6 or sub-6 chord is a homonym of the sub-7 chord:

Pentads have even more string-mates. Here are the down-9 (har-9) and up-9 (sub-9) pentads, which are octave inverses of each other:

$\wedge 9$ or s9 chord - major version							
		g7			w8		
			w5				
	w9				r3		
	g7			w1			
		w5					
				r3			
			w1				

Note that the sub-9 chord is upmajor, while the sub-7 chord is downminor. The sub-9 chord is formed from the sub-7 chord not by adding a 9 th above it, but by adding a new root below it. The upminor- 6 add- 11 or sub- 6 add- 11 chord is a homonym of the up-9 or sub-9 chord:

${ }^{\wedge} 6,11$ or s6,11 chord - major version							
					w8		
			w5				r6
			g3			w11	
				w1			
		w5				r6	
		g3					
			w1				

${ }^{\wedge} \mathrm{m} 6,11$ or s6,11 chord - minor version						
					w8	
			w5			r6
		g3		w11		
		w1				
	w5		r6			
g3						
w1						

More pentads:

The next two tables list some 7-limit triads and tetrads. The last two columns show the fretboard shape. To avoid negative fret numbers, the root is always on fret 3 . This is by no means an exhaustive survey. One of the pleasures of playing in the Kite Tuning is that one's fingers are constantly stumbling across new and unusual chords. Some of these are fairly dissonant, but because the component intervals are all consonant, the dissonance perhaps seems less alien.

Figure 4.1 - Various 41-edo triads

edo name		edosteps	color name		major version	minor version	homonym
sus2	P1 M2 P5	0724	2	w1 w2 w5	302	314	sus4
sus4	P1 P4 P5	01724	4	w1 w4 w5	352	364	sus2
v	P1 vM3 P5	01324	y	w1 y3 w5	332	344	-
${ }^{\wedge} \mathrm{m}$	$\mathrm{P} 1{ }^{\wedge} \mathrm{m} 3 \mathrm{P} 5$	01124	g	w1 g3 w5	322	334	-
vm	P1 vm3 P5	0924	Z	w1 z3 w5	312	324	-
\wedge	P1 ${ }^{\wedge} \mathrm{M} 3 \mathrm{P} 5$	01524	r	w1 r3 w5	342	354	-
${ }^{\wedge}$ dim	$\mathrm{P} 1{ }^{\wedge} \mathrm{m} 3 \mathrm{~d} 5$	01120	$\mathrm{g}(\mathrm{zg} 5)$	w1 g3 zg5	320	332	z,y6no5
vdim	P1 vm3 d5	0920	$\mathrm{z}(\mathrm{zg} 5)$	w1 z3 zg5	310	322	s6no5

All the edosteps run even-odd-even. As previously noted, the neutral triad is difficult to play in the Kite Tuning. This is because its edosteps are $0-12-24$, all even. In a 1-3-5 voicing, half of the strings are useless. A more playable voicing is $5-1-3$, using open strings: 57×0 for major, or 25×0 for minor.
In tetrads, the edosteps generally run even-odd-even-odd. But most 6th chords run even-odd-even-even. These chords have string-mates that are written e.g. $2 / 5$ to indicate chord notes at frets 2 and 5 . Another possibility is to voice either the 5th or the 6th below the root.

Figure 4.2 - Various 41-edo tetrads

edo name		edosteps	color name		major version	minor version	homonym
v6	P1 vM3 P5 vM6	0132430	y6	w1 y3 w5 y6	3 3 2/5	$344 / 7$	g7
${ }^{\wedge} \mathrm{m} 7$	$\mathrm{P} 1{ }^{\wedge} \mathrm{m} 3 \mathrm{P} 5{ }^{\wedge} \mathrm{m} 7$	0112435	g7	w1 g3 w5 g7	3221	3344	y6
vm7	P1 vm3 P5 vm7	092433	z7	w1 z3 w5 z7	3120	3243	r6
${ }^{\wedge} 6$	P1 ^M3 P5 ^M6	0152432	r6	w1 r3 w5 r6	$342 / 6$	$354 / 8$	z7
v7	P1 vM3 P5 vm7	0132433	h7	w1 y3 w5 z7	3320	3443	-
$\operatorname{vm} 7(b 5)$ or vhalfdim	P1 vm3 d5 vm7	092033	s7	w1 z3 zg5 z7	3100	3223	s6
${ }^{\wedge} \mathrm{m} 6$	P1 ${ }^{\wedge} \mathrm{m} 3 \mathrm{P} 5{ }^{\wedge} \mathrm{M} 6$	0112432	s6	w1 g3 w5 r6	$322 / 6$	$334 / 8$	s7
$\wedge 7$	P1 ${ }^{\wedge} \mathrm{M} 3$ P5 ${ }^{\wedge} \mathrm{m} 7$	0152435	r,g7	w1 r3 w5 g7	3421	3544	-
vm6	P1 vm3 P5 vM6	092430	z,y6	w1 z3 w5 y6	$312 / 5$	$324 / 7$	g7(zg5)
$\wedge_{\mathrm{m}}^{\mathrm{m}}(\mathrm{~b} 5)$ or ${ }^{\wedge}$ halfdim	$\mathrm{P} 1{ }^{\wedge} \mathrm{m} 3 \mathrm{~d} 5{ }^{\wedge} \mathrm{m} 7$	0112035	g7(zg5)	w1 g3 zg5 g7	3201	3324	z,y6
vM7	P1 vM3 P5 vM7	$0 \quad 13 \quad 2437$	y7	w1 y3 w5 y7	3322	3445	-

Chord progressions can be written out as $\mathrm{Cv}-\mathrm{vA}^{\wedge} \mathrm{m}-\mathrm{Fv}-\mathrm{Gv} 7$ or as $\mathrm{Iv}-\mathrm{vVI}^{\wedge} \mathrm{m}-\mathrm{IVv}-\mathrm{Vv} 7$.

The next chart shows 41 -edo mapped onto the 5 -limit harmonic lattice. Each node has its 41 -edo name and its 41 -edo keyspan. The color of each lattice row is on the left.
yoyo
yo
wa

On the 7-limit lattice:

The vanishing of the Bizozogu comma (2401/2400), the Lulu comma (243/242), and the Thuthu comma (512/507) allow a 2-D representation of 13-limit just intonation. The purple notes in the center row represent three pairs of neutral intervals, each equated by one of these commas. Thus " ~ 312 " represents both 60/49 and 49/40, as well as $11 / 9$ and $27 / 22$, and also $16 / 13$ and $39 / 32$.

